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Abstract
This paper introduces the concept of complex quadratic Diophantine fuzzy sets (CQDFS) which serves as a robust framework
for effectively dealingwith uncertaintywithin decision-making challenges. The study comprehensively explores the properties
and characteristics of CQDFS by conducting a systematic comparative analysis to demonstrate its superiority over existing
techniques in managing complex fuzzy information. This foundation contributes to the theoretical understanding of CQDFS
and also provides valuable practical insights into a wide range of transportation strategies and economic efficiency. These
insights offer practical solutions to enhance decision-makingwithin these important and interconnected domains. Theproposed
complex information system serves as a versatile and adaptive tool, significantly strengthening the flexibility available for
addressing complex decision-making challenges, particularly in contexts such as the management of GPS-enabled cargo
vehicles and cargo loading operations, where precision and efficiency are of great importance.

Keywords Complex quadratic Diophantine fuzzy set · Discrete Fourier transform · Congruences · Decision-making ·
Transportation · Agriculture

Mathematics Subject Classification 20M10 · 20N99

Introduction

In the field of decision-making and data analysis, uncertainty
and imprecision are extensive challenges that can signifi-
cantly impact the quality of decisions. Traditional approaches
that rely on crisp sets and binary logic often struggle to ade-
quately address these challenges, as they are ill-equipped
to handle the inherent ambiguity and vagueness present in
real-world scenarios. The fuzzy set (FS) [39] offers a mathe-
matical framework that allows us to represent and reasonwith
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uncertain and imprecise information in a more realistic way
by introducing the notion of membership degrees that repre-
sent the uncertain nature of human perception and reasoning.
Decision-makers can indicate the extent to which an element
belongs to a given set by assigning membership degrees to
elements, offering a more precise representation of available
information. Elements can be assigned membership degrees
depending on the decision-maker’s knowledge, experience,
and confidence in their evaluations. This enables a more
flexible and fine-grained depiction of uncertainty, which is
particularly useful when dealing with imprecise and ambigu-
ous data. FS allows decision-makers to capture the lack of
exact boundaries, allowing for more robust decision-making
procedures that are more matched with the complexity of
real-world problems. In the context of multi-criteria decision
analysis, the fuzzy set theory provides a natural framework
for representing and evaluating preferences and trade-offs
across various criteria. Traditional decision models often
struggle to handlemultiple criteria and their associated uncer-
tainties, leading to oversimplified and biased decisions. This
theory offers a comprehensive strategy that helps decision-
makers to successfully handle and balance various factors
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at the same time. Decision-makers are enabled to make
well-rounded and informed judgments that reflect the inher-
ent ambiguity and imprecision within the decision-making
environment by including fuzzy sets and fuzzy logic inmulti-
criteria decision models.

Over the years, fuzzy set theory has witnessed several
developments and extensions to address specific challenges
and application domains to other branches of mathematics
such as fuzzy ordinary differential equations [33], fuzzy par-
tial differential equations [1, 30, 32, 41], fuzzy numerical
analysis [2, 9].

For instance, the intuitionistic fuzzy set (IFS) introduced
by Atanassov in [5] extended fuzzy sets by incorporating the
concept of non-membership, capturing uncertainty and hesi-
tancy in decision-making. Cuong [8] introduced the concept
of a picture fuzzy set (PFS), a novel paradigm characterized
by three functions assigning positive membership, neutral,
and negative membership functions to individual objects or
alternatives. In [35], Yager introduced the Pythagorean fuzzy
set (PyFS), which encompasses both membership and non-
membership degrees. These degrees satisfy the condition that
the sum of their squares is less than or equal to 1. Appli-
cations of PyFS in decision-making can be found, e.g., in
[18]. Atanassov [6] also referred to the PyFS as the interval-
valued fuzzy set (IFS) of type 2. Scholars have since focused
their research on exploring the q-rung orthopair fuzzy set
(q-ROFS) as an additional model to expand the possibilities
offered by IFS and PFS [22]. Riaz introduced the concept
of linear Diophantine fuzzy set (LDFS) in [27]. This exten-
sion provides a novel approach to expressing uncertainty
and offers increased versatility and reliability compared to
existing notions such as IFS, PyFS, and q-ROFS. This is
primarily due to the incorporation of reference or control
factors along with membership and non-membership func-
tions. More recently, Zia et al. [42] proposed the concept of
a quadratic Diophantine fuzzy set (QDFS). This extension
of LDFS introduces a third reference parameter, enabling
the handling of uncertain scenarios involving ignorance or
hesitation.

In practical scenarios, data often exhibits fluctuating
cycles, encompassing periodicity, along with inherent ambi-
guity and uncertainty. Existing theories and approaches,
however, frequently struggle to successfully analyze and
capture the complexity involved with such data, sometimes
resulting in data loss throughout the analysis process. Ramot
et al. [26] presented a new notion called the complex fuzzy
set (CFS) to address this problem. Unlike regular fuzzy sets,
the CFS includes a unit disc on a complex plane rather than
the conventional interval of [0, 1]. This addition gives a more
thorough representation of the data, allowing for a broader
range of values and reflecting the subtle relationships and pat-
terns seen in complex data sets. The advent of the CFS has
sparked significant interest in the subject of fuzzy set theory,

providing a useful tool for dealing with data with periodic
changes and intrinsic uncertainty.

Alkouri and Salleh [4] extended the concept of CFS and
developed the notion of a complex intuitionistic fuzzy set
(CIFS). This generalized version includes complex-valued
membership and non-membership functions in polar coordi-
nates. This representation allows decision-makers to capture
and depict ambiguity and uncertainty in a more nuanced
and adaptable way, taking into account the complicated
relationship between both members and non-members in
complex decision-making contexts. Furthermore, Akram et
al. [3] presented the complex picture fuzzy set (CPFS), which
includes hesitation-type fuzzy information. To broaden the
use and applicability of CIFS, Ullah et al. [34] created
the concept of a complex Pythagorean fuzzy set (CPyFS).
This enhancement enhances the decision-making process by
allowing complicated uncertainties to be considered. Liu et
al. [21] established the notion of the Cq-ROFS in the pur-
suit of constructing effective decision models, which enables
decision-makers to negotiate the presence of uncertainty and
imprecision inherent in complex data sets. It is worth not-
ing that existing ideas and methodologies for complex fuzzy
information frequently place tight requirements on complex
membership and non-membership functions, restricting their
capacity to handle functions from anywhere in the space.
Kamacı [14], Yousafzai et al. [38] (alternate definition) and
Zia et al. [44], on the other hand, offered the notion of the
complex linear Diophantine fuzzy set (CLDFS) as a more
straightforward, valid, and adaptable technique that can be
used to a broad variety of options and attributes.

A brief literature review will now be presented, highlight-
ing innovativemethods that have surfaced in recent academic
research about the application of fuzzy decision-making in
transportation planning. In a study by Zhang et al. [40], they
addressed the complex challenge of public transportation
development decision-making by actively involving the pub-
lic using a large-scale group decision-making method rooted
in fuzzy preference relations. In another study by Moham-
madi et al. [23], the researchers devised a multi-objective
reliable optimizationmodel. Thismodel incorporatedvarious
aspects, such as reliable facility location-allocation, equi-
table distribution of relief items, victim assignment, and truck
routing by utilizing robust optimization and the neutrosophic
fuzzy set to overcome uncertainties inherent in catastrophe
situations. On the sustainable front, Seker and Aydin [28]
introduced a novel two-stage hybrid method, IVIF-AHP and
CODAS, for evaluating public transportation system sustain-
ability. This approach considers disparate stakeholder view-
points, ensuring a holistic evaluation process. Sensitivity
analyses were performed to validate the method’s robust-
ness, highlighting its reliability and suitability for real-world
applications. In urban traffic congestion, Hartanti et al. [12]
focused on optimizing traffic light settings using fuzzy logic.
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By employing the fuzzy Mamdani method, they created an
intelligent traffic management system capable of real-time
predictions and adjustments. By averting unnecessary green
signals through predictive intelligence, this approach aimed
to substantially reduce congestion, offering potential solu-
tions for urban traffic management challenges. Lian et al.
[20] presented a novel solution via fuzzy modeling for non-
linear autonomous vehicles to smoothly follow the planned
path under external disturbances andnetwork-induced issues,
such as cyber-attacks, time delays, and limited bandwidths.
These studies emphasize the significance of fuzzy decision-
making in enhancing the efficiency, resilience, and sustain-
ability of transportation systems. Furthermore, thesemethods
offer adaptable, data-driven solutions, underscoring the cru-
cial role of advanced computational techniques in shaping
the future of transportation planning and management. By
utilizing the neuro-inference fuzzy system, Zivkovic et al.
[43] improved the current time-series prediction (forecast-
ing) algorithms based on hybrids between machine learning
and nature-inspired algorithms for COVID-19 case predic-
tion.

Fuzzy set theory has various diverse applications in
different branches of science for example in a study by
Korenevskiy et al. [19] they investigated predicting the sever-
ity of end-organ damage of the anatomical zones of the lower
extremities. Azizpour et al. [7] simulated the time series of
groundwater parameters using fuzzy models. Parsajoo et al.
[25] developed artificial bee colony techniques for the assess-
ment of rock brittleness index by applying fuzzy model.

Various types of fuzzy sets, such as CFSs, CIFSs,
CPyFSs, and Cq-ROFSs, have been extensively examined
and implemented in practical applications. However, these
sets impose stringent constraints on both membership and
nonmembership grades. In response to these limitations,
CLDFS introduces reference parameters formembership and
nonmembership grades, thereby broadening the applicabil-
ity of these sets. Nevertheless, CLDFS still incorporates
acceptance- and rejection-type parameters, which may not
comprehensively capture fuzzy information about denial,
ignorance, or confusion.

To bridge this research gap, there is a need for a specialized
fuzzy set that not only effectively handles ignorance or confu-
sion, as observed in CPFS, but also extends the feasible space
by introducing parameters akin to CLDFS. Hence, CQDFS
emerges as a motivating solution in this context. Conse-
quently, the current study aims to leverage the concept of
CQDFS, which includes a third parameter to address scenar-
ios involving denial, ignorance, or confusion. The objectives
of this paper are outlined as follows:

• To utilize the CQDFS in real-life decision-making sce-
narios and explain its characteristics and comparison
method.

• To compare CQDFS with existing CFS, such as CIFS,
CPyFS, Cq-ROFS, CLDFS, and CPFS, and demonstrate
its superiority over them.

• To address decision-making challenges within the trans-
portation sector by integrating inverse discrete Fourier
transform principles and abstract algebraic notions.

The structure of this paper is as follows. In “Prelimi-
naries”, an introduction is presented, explaining key fuzzy
sets such as CFS, CIFS, CPFS, CPyFS, Cq-ROFS, and
CLDFS. Furthermore, the concept of CQDFS is introduced,
and a comparative analysis is conducted with established
fuzzy sets. Moving on to “Smart transportation decisions
with CQDFS”, the application of CQDFS in addressing a
decision-making problem associated with the transportation
of goods using GPS-equipped vehicles is proposed. A novel
methodology is provided, entailing the integration ofCQDFS
with discrete Fourier transform to derive a comprehensive
solution. “Optimizing cargo loading with CQDF-congru-
ences” extends the discussion to utilizingCQDFcongruences
in decision-making processes about cargo loading opera-
tions. In “Comparative analysis”, a comparative analysis is
presented, contrasting the attributes of CQDFS with those
of existing fuzzy sets. Finally, “Conclusion” summarises the
paper with a thorough conclusion, providing a comprehen-
sive synthesis of the study’s findings.

Preliminaries

In this section, the core concepts of CFS, CIFS, CPyFS,
CPFS, Cq-ROFS, and CLDFS are explored. This exploration
is vital as it equips readers with the fundamental knowledge
necessary to shape and define the CQDFS, setting the stage
for a deeper understanding of this innovative concept in the
realm of fuzzy sets. This will establish a foundation upon
which the superior performance of the proposed CQDFS can
be assessed when compared to the aforementioned complex
fuzzy systems. This investigation aims to highlight the inno-
vative advancements introduced to the field of fuzzy systems
and their potential implications for various applications.

Definition 1 [26] A complex fuzzy set (CFS) CF over the
non-empty reference set �, is an object of the form:

CF =
{(

λ, fCF (λ)eiθCF (λ)
)

: λ ∈ �
}

,

where fCF (λ)eiθCF (λ) is themembership function, which lies
within a unit disk in a complex planewith fCF (λ) and θCF (λ)

being real-valued functions satisfying the condition

0 ≤ fCF (λ), θCF (λ) ≤ 1.
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Definition 2 [11] Let � be the non-empty reference set. A
complex intuitionistic fuzzy set (CIFS)CI is an object of the
form:

CI =
{(

λ, fCI (λ)eiθCI (λ), gCI (λ)eiφCI (λ)
)

: λ ∈ �
}

,

where the membership function and non-membership func-
tion are:

fCI (λ)eiθCI (λ) and gCI (λ)eiφCI (λ).

which lie within a unit disk in complex plane with fCI (λ),

gCI (λ), θCI (λ) and φCI (λ) being real-valued functions sat-
isfying the conditions

0 ≤ fCI (λ) + gCI (λ) ≤ 1 and 0 ≤ θCI (λ) + φCI (λ) ≤ 1.

Definition 3 [3] A complex picture fuzzy set (CPFS) CP on
a universal set � is defined as:

CP =
{(

λ,
(
fCP (λ)eiθCP (λ), hCP (λ)eiφCP (λ),

gCP (λ)eiψCP (λ)
))

: λ ∈ �
}

here f (λ) is called membership function, h(λ) is called neu-
tralmembership function and g(λ) is called non-membership
function with fCP , hCP (λ), gCP (λ), θCP (λ), φCP (λ), ψCP

(λ) ∈ [0, 1], satisfying 0 ≤ fCP + hCP (λ) + gCP (λ),≤ 1
and 0 ≤ θCP + φCP (λ) + ψCP (λ),≤ 1.

Definition 4 [34] For a non-empty reference set�. The com-
plex Pythagorean fuzzy set (CPyFS) CPy is defined as

CPy =
{(

λ, fCPy (λ)eiθCPy (λ)
, gCPy (λ)eiφCPy (λ)

)
: λ ∈ �

}
,

where

fCPy (λ)eiθCPy (λ) and gCPy (λ)eiφCPy (λ)
,

denote the complex-valuedmembership andnon-membership
functions respectively, satisfying the conditions

0 ≤ f 2
CPy

(λ) + g2
CPy

(λ) and 0 ≤ θ2
CPy

(λ) + φ2
CPy

(λ) ≤ 1.

Definition 5 [21] Let � be the non-empty reference set. The
complex q-rung orthopair fuzzy set (Cq-ROFS)CqR is given
by

CqR =
{(

λCqR (λ)eiθCqR (λ)
, gCqR (λ)eiφCqR λ)

(
)

: λ ∈ �
}

,

where

fCqR (λ)eiθCqR (λ) and gCqR (λ)eiφCqR (λ)
,

denote the complex-valuedmembership andnon-membership
functions respectively, satisfying the conditions

0 ≤ f q
CqR

(λ) + gq
CqR

(λ) ≤ 1

and 0 ≤ θ
q
CqR

(λ) + φ
q
CqR

(λ) ≤ 1, (q ≥ 1).

Definition 2.1 [14] Let � be a non-empty universal set. A
CLDFS CL on � is an object of the form

CL =
{(

λ,
(
fCL (λ)eiθCL (λ), gCL (λ)eiφCL (λ)

)
, (α, β)

)
: λ ∈ �

}
,

where fCL (λ)eiθCL (λ), gCL (λ)eiφCL (λ) are respectively the
complex membership and non-membership functions, and
α, β are reference parameters such that

fCL (λ), gCL (λ), θCL (λ), φCL (λ), α, β ∈ [0, 1],

which satisfies the following conditions:

(i) 0 ≤ α fCL (λ) + βgCL (λ) ≤ 1;
(ii) 0 ≤ αθCL (λ) + βφCL (λ) ≤ 1;
(iii) 0 ≤ α + β ≤ 1.

Complex quadratic Diophantine fuzzy set

The concept of a CQDFS is introduced in this section. The
proposed idea is motivated by the concept of a general
quadratic Diophantine equation in two variables x and y of
the form:

αx2 + βxy + γ y2 = k.

Considering this equation, the introduction of the concept
of CQDFS is now presented as follows:

Let � be a non-empty universal set. A CQDFS CQ on �

is an object of the form

CQ =
{(

λ,
(
fCQ (λ)eiθCQ (λ)

, gCQ (λ)eiφCQ (λ)
)

, (α, β, γ )
)

: λ ∈ �
}

,

where fCQ (λ)eiθCQ (λ)
, gCQ (λ)eiφCQ (λ) are respectively the

complex membership and non-membership functions, and
α, β, γ are reference parameters such that

fCQ (λ), gCQ (λ), θCQ (λ), φCQ (λ), α, β, γ ∈ [0, 1],

which satisfies the following conditions:

(i) 0 ≤ α f 2
CQ

(λ) + β fCQ (λ)gCQ (λ) + γ g2
CQ

(λ) ≤ 1;
(ii) 0 ≤ αθ2

CQ
(λ) + βθCQ (λ)φCQ (λ) + γφ2

CQ
(λ) ≤ 1;

(iii) 0 ≤ α + β + γ ≤ 1.
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For convenience, letCQ = ϑ =
((

fCQ e
iθCQ , gCQe

iφCQ

)
,

(α, β, γ )) be a complex quadraticDiophantine fuzzy number
(CQDFN). Figure 1 above represents the illustration of fea-
sible spaces for membership and non-membership functions
for various choices of reference parameters.

Now, the objective is to emphasize the advantages and
broader applicability of CQDFS by conducting a compari-
son with various other fuzzy number systems. Through the
examination of these comparisons, a deeper understanding
of the unique features and benefits offered by CQDFS can be
obtained.

CQDFS against CIFS, CPyFS and Cq-ROFS

Now, it is demonstrated that in CQDFS, there is a greater
feasible space available for selecting membership and non-
membership values. In this context, the following theorem is
presented.

Theorem 2.2 The space of CQDFNs is larger than that of
CIFNs, CPyFNs, and Cq-ROFNs.

Proof Let
((

f eiθ , geiφ
)
, (α, β, γ )

)
be a CQDFN then the

inequalities

0 ≤ α f 2 + β f g + γ g2 ≤ 1, 0 ≤ αθ2 + βθφ + γφ2 ≤ 1

and 0 ≤ α + β + γ ≤ 1.

for β = 0 and arbitrary choice of α and γ holds for every
CIFN, CPyFN. Hence every CIFN and CPyFN is also a
CQDFN. A CQDFN with a given set of parameters may not
necessarily be a CIFN or CPyFN.

For example, let f eiθ = 0.63ei0.89 and geiφ = 0.94ei0.89,
then

f + g = 1.56 > 1 and θ + φ = 1.78 > 1,

and

f 2 + g2 = 1.27 > 1 and θ2 + φ2 = 1.58 > 1.

However, when α = 0.51, β = 0.11 and γ = 0.04. the
expressions are as follows:

α f 2 + β f g + γ g2 = 0.30 < 1

and αθ2 + βθφ + γφ2 = 0.52 < 1.

Similarly, it is easy to check that for a Cq-ROFS, whenever
f eiθ ≈ geiφ → ei , then q → ∞.
For a special case f eiθ = geiφ = ei , there does not exist

any specific q. In this particular instance, there is no existence
of a Cq-ROFN. However, for any chosen values of α, β, and

γ such that 0 ≤ α + β + γ ≤ 1, the following inequalities
hold:

α f 2+β f g+γ g2=αθ2 + βθφ+γφ2 = α + β + γ ≤ 1.

So, it concludes that the space of CQDFN consists ofmore
points than the spaces of CIFN, CPyFN, and Cq-ROFN, pro-
viding more freedom to assign values to f and g. �	

CQDFS against CPFS

The complex picture fuzzy set imposes a limitation on mem-
bership, neutral, and non-membership functions that their
summust not exceed 1, as a result, the feasible space of CPFS
gets restricted. For example, let

((
f eiθ , heiψ, geiφ

))
be a

CPFN such that fCP = 0.43, hCP = 0.52 and gCP = 0.21.
Then,

f + h + g = 0.43 + 0.52 + 0.21 = 1.16 > 1.

Hence, such f , g, and h do not represent the CPFN. Now in
CQDFN for α = 0.43, β = 0.52 and γ = 0.21 and the pair
f = 0.62 and g = 0.51, the following inequality holds:

α f 2(x) + β f g + γ g2(x) = 0.38 < 1.

Thus, there exist numbers that are not CPFNs but are
CQDFNs. By following the same arguments as in Theo-
rem 2.2, it is easy to show that every CPFN is, in fact, a
CQDFN.

CQDFS against CLDFS

In this section, it is discussed why CQDFS is advantageous
over CLDFS despite having the same space. Since CLDFS
involves two parameters, α for acceptance type and β for
rejection type,CQDFSconsists of three parameters. The third
additional parameter γ is of the hesitating kind, allowing a
phenomenon to be ignored. In real-life situations, decision-
makers often come across scenarios where they feel unsure
or uncertain about making a choice. Let’s consider the con-
text of investing in the stock market. When an investor is
considering buying stocks, there are different possibilities
they might encounter. For instance, they could choose to
invest in the stocks of a specific company, believing it to
be a good opportunity (acceptance type). On the other hand,
they might decide to reject that particular company’s stocks
and instead invest in stocks of a different company that they
perceive to have more potential (rejection type). Lastly, they
may feel hesitant or unsure about investing in stocks and
choose to keep their funds in safer options like bonds or sav-
ings accounts (ignorance type). In such situations, utilizing
CQDFS as an analytical tool can provide valuable insights
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Fig. 1 Complex quadratic
Diophantine fuzzy sets with
different reference parameters

for decision-making in the complex world of stock market
investments.

Based on the comparisons above, it becomes apparent that
the newly introduced CQDFS represents a unique hybrid
form of fuzzy set, combining the distinctive characteristics of
both CLDFS and CPFS. This combination of features creates
a novel and versatile fuzzy set, thereby extending the scope
and capabilities of fuzzy systems in various decision-making
applications. In the following sections, an exploration will be
conducted to uncover the advantages of CQDFS, emphasiz-
ing its potential to address complex problems with enhanced
efficacy and precision.

Figure 2 represents the hierarchical generalization from
the most simple complex fuzzy set to the most advanced
complex quadratic Diophantine fuzzy set.

Smart transportation decisions with CQDFS

Transportation plays a crucial role in global economies,
enabling the movement of goods, services, and people.

Decisions made in transportation have a profound impact
on economic development, affecting market access, supply
chains, production costs, and consumer behavior. There-
fore, strategic decision-making in transportation is vital for
economic growth and stability. Various factors influence
transportation decisions, including market demand, infras-
tructure development, technology, environmental concerns,
and regulations. Understanding consumer demand patterns is
especially important. It helps optimize transportation routes,
ensure timely deliveries, and enhance market responsiveness
and competitiveness. In the modern era, data and tech-
nology have transformed transportation decision-making.
Tools like data analytic, predictive modeling, and real-
time monitoring offer valuable insights into transportation
patterns. These insights help stakeholders make informed
decisions, using CQDFS to navigate transportation complex-
ities. The use of CQDFS can better shape transportation
decision-making by incorporating membership, hesitancy,
and non-membership values, providing a comprehensive
tool for addressing transportation problems. The interaction
between data, technology, and CQDFS capabilities leads to
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Fig. 2 Hierarchical
representation of fuzzy sets Complex Fuzzy Set

Complex Intuitionistic Fuzzy Set

Complex Pythagorean Fuzzy Set

Complex q-Rung orthopair Fuzzy Set

Complex Linear Diophantine Fuzzy Set

Complex Quadratic Diophantine Fuzzy Set

Complex Picture Fuzzy Set

Complex Quadratic Diophantine Fuzzy Set

a future where transportation systems are efficient, environ-
mentally, and economically sustainable. Within this section,
an examination will be undertaken to address a decision-
making problem concerning the transportation of goods
using GPS-equipped vehicles, with the aim of enhancing
cargo operations. Prior to delving into this specific problem,
crucial definitions will be introduced to incorporate CQDFS
and formulate a comprehensive methodology. This method-
ology aims to address the challenge of economic efficiency
within the transportation sector that relies on GPS-enabled
vehicles for goods transportation.

Definition 6 [29] A sequence {d(q)} of length � has the
following definition for the qth inverse discrete Fourier trans-
form coefficient:

d(q) = 1

�

�−1∑
p=0

d ′(p)cis2π
�

pq, p ∈ 0, 1, 2, . . . , � − 1,

where d(�) has different values.

In the analysis, a specific case is considered, where a func-
tion is defined as d ′(q) = S[q](α[q] + β[q]) ∈ [0, 1]. Here,
S[q] represents themeasured signal,α[q] represents the level
of certainty, and β[q] represents the measure of confusion
associated with the measurement of S[q].
Definition 7 [29] The matrix product form provides the rep-
resentation of the discrete Fourier transform (DFT) for the
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�
2(� − 1)

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 cis
( 2π

�
(� − 1)

)
cis

( 2π
�

(� − 1)
)

. . . cis
( 2π

�
(� − 1)2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

d ′(0)
d ′(1)

.

.

.

d ′(� − 1)

⎞
⎟⎟⎟⎠ .
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By studying these equations, it can be seen that the first
matrix on the right-hand side concentrates on the signal’s
time, while the second matrix deals with its amplitude.

In the forthcoming section, an algorithmwill be delineated
for the implementation of CQDFS in the domain of signals
and systems. The primary objective is to identify a particular
signal within the presence of noise.

Let � represent the number of distinct signals, and let
s1(q), s2(q), s3(q), . . . , sm(q) denote these signals, accom-
panied by their respective noise components n1(q), n2(q),

n3(q), . . . , nm(q). Each signal is recorded at� different time
instances, with q ranging from 0 to � − 1. Precisely, the sig-
nal denoted as sm(q) and its corresponding noise, referred
to as nm(q), are specifically associated with the �-th signal.
Moreover, αm(q) and γm(q) represent measures of certainty
associated with the signal and noise measurements, while
βm(q) quantifies the level of ambiguity encountered during
signal processing. It is essential to acknowledge that the cer-
tainty measure can be subjective, reflecting the receiver’s
personal opinion, or it can serve as an indicator of the accu-
racy of the signal-measuring device. The discrete Fourier
transformof this�-th signal canbemathematically expressed
as:

sm(q) = 1

�

�−1∑
p=0

S[p](α[p] + β[p])

cis
2π

�
pq, q, p ∈ 0, 1, 2, . . . , � − 1. (3.1)

Similarly, the discrete Fourier transform of the �-th noise is

nm(q) = 1

�

�−1∑
p=0

N [p](γ [p] + β[p])cis 2π

�
pq,

q, p ∈ 0, 1, 2, . . . , � − 1. (3.2)

In representing a signal affected by noise, Eqs. (3.1) and
(3.2) are utilized as a model, incorporating CQDFS for the
representation process.

CQDFS is used in signal analysis to identify a specific
signal from a group of signals collected by a receiver. To
achieve this, a reference signal is established as an initial
point. This reference signal indicated as Phi , is captured
many times, exactly Gamma times. This reference signal’s
discrete Fourier transform (DFT) is stated as:


(q) = 1

�

�−1∑
p=0


′(p)cis 2π

�
pq, q, p ∈ 0, 1, 2, . . . , � − 1,

where 
′(p) ∈ [0, 1] and 0 ≤ p ≤ � − 1.

Algorithm

For comparing signals, the followingmethodwill be employed,
comprising the subsequent steps:

Step 1:By expanding s�(q) and n�(q), following expres-
sions are obtained:

s�(q) = 1

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S[0](α[0] + β[0])cis 2π
�
q(0)

+S[1](α[1] + β[1])cis 2π
�
q(1)

+S[2](α[2] + β[2])cis 2π
�
q(2) + · · ·

+S[� − 1](α[� − 1]
+β[� − 1])cis 2π

�
q(� − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

n�(q) = 1

�

⎡
⎢⎢⎣
N [0]γ [0]cis 2π

�
q(0) + N [1]γ [1]cis 2π

�
q(1)

+N [2]γ [2]cis 2π
�
q(2) + · · ·

+N [� − 1]γ [� − 1]cis 2π
�
q(� − 1)

⎤
⎥⎥⎦ .

By substituting q = 0, 1, 2, 3, . . . , � − 1 into the above,
the following expressions are derived for s�(q). Specifically,
when q = 0, the equation becomes:

s�(0) = 1

�

⎡
⎢⎢⎣
S[0](α[0] + β[0]) · 1 + S[1]α[1] · 1

+S[2](α[2] + β[2]) · 1 + . . .

+S[� − 1](α[� − 1] + β[� − 1]) · 1

⎤
⎥⎥⎦ .

For q = 1:

s�(1) = 1

�

⎡
⎢⎢⎢⎢⎢⎣

S[0](α[0] + β[0]) · 1 + S[1](α[1] + β[1])
cis 2π

�
(1) + S[2](α[2] + β[2])

cis 2π
�

(2) + · · · + S[� − 1](α[� − 1]
+β[� − 1])cis 2π

�
(� − 1)

⎤
⎥⎥⎥⎥⎥⎦

.

Continuing with the same approach, when q = � − 1, the
following equation is obtained:

s�(� − 1) = 1

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S[0](α[0] + β[0]) · 1 + S[1]α[1]
cis 2π

�
(� − 1) + S[2](α[2] + β[2])

cis 2π
�
2(� − 1) + · · ·

+S[� − 1](α[� − 1]
+β[� − 1])cis 2π

�
(� − 1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Follow a similar process for n�(q) and the reference signal

(q).

Step 2: In the subsequent step, transform these � samples
of s�(q) and n�(q) into matrix form. In addition, compute
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the discrete Fourier transform (DFT) for 
(q). Employing
the Definition 7, obtain:

⎛
⎜⎜⎜⎝

s�(0)
s�(1)

.

.

.

s�(� − 1)

⎞
⎟⎟⎟⎠

= 1

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 cis
( 2π

�
(1)

)
cis

( 2π
�

(2)
)

. . . cis
( 2π

�
(� − 1)

)

1 cis
( 2π

�
(2)

)
cis

( 2π
�

(4)
)

. . . cis
( 2π

�
2(� − 1)

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 cis
( 2π

�
(� − 1)

)
cis

( 2π
�
2(� − 1)

)
. . . cis

( 2π
�

(� − 1)2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

S[0](α[0] + β[0])
S[1](α[1] + β[1])

.

.

.

S[� − 1](α[� − 1] + β[� − 1])

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

n�(0)
n�(1)

.

.

.

n�(� − 1)

⎞
⎟⎟⎟⎠

= 1

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 cis
( 2π

�
(1)

)
cis

( 2π
�

(2)
)

. . . cis
( 2π

�
(� − 1)

)

1 cis
( 2π

�
(2)

)
cis

( 2π
�

(4)
)

. . . cis
( 2π

�
2(� − 1)

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 cis
( 2π

�
(� − 1)

)
cis

( 2π
�

(� − 1)
)

. . . cis
( 2π

�
(� − 1)2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

N [0](γ [0] + β[0])
N [1](γ [1] + β[1])

.

.

.

N [� − 1](γ [� − 1] + β[� − 1])

⎞
⎟⎟⎟⎠ ,

and

⎛
⎜⎜⎜⎝


(0)

(1)

.

.

.


(� − 1)

⎞
⎟⎟⎟⎠

= 1

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 cis
( 2π

�
(1)

)
cis

( 2π
�

(2)
)

. . . cis
( 2π

�
(� − 1)

)

1 cis
( 2π

�
(2)

)
cis

( 2π
�

(4)
)

. . . cis
( 2π

�
2(� − 1)

)

.

.

.
.
.
.

.

.

.
. . .

.

.

.

1 cis
( 2π

�
(� − 1)

)
cis

( 2π
�
2(� − 1)

)
. . . cis

( 2π
�

(� − 1)2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝


′[0]

′[1]

.

.

.


′[� − 1]

⎞
⎟⎟⎟⎠ .

Step 3:Upon computing thematrices above, valueswithin
the unit circle in a complex plane are obtained. Given that

the order of complex numbers is not crucial, the absolute
values of the � samples for the signal s�(q), noise n�(q),
and the reference signal 
(q) are calculated. This leads to
the following:

⎛
⎜⎜⎜⎝

|s�(0)|
|s�(1)|

...

|s�(� − 1)|

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

|n�(0)|
|n�(1)|

...

|n�(� − 1)|

⎞
⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎝

|
(0)|
|
(1)|

...

|
(� − 1)|

⎞
⎟⎟⎟⎠ .

These matrices are commonly referred to as absolute matri-
ces.

Step 4: In the subsequent step, a comparison is made
between the largest entry derived from the absolute matrix
of s�(q) and the largest entry in n�(q). If the signal entry is
determined to be lower than the noise value, it is excluded
from further comparison. Conversely, if the signal entry sur-
passes the noise entry, a comparison is then made between
the difference of these entries and the reference signal.

Optimizing vehicle position estimate in a noisy GPS

In this scenario, let’s consider a transportation company
managing a fleet of vehicles that transport goods between
different locations. Each vehicle is equipped with GPS and
communication systems to track its position and commu-
nicate with the central control system. However, the GPS
signals received, denoted as s1(q), s2(q), and s3(q), rep-
resenting the positions of vehicles, are corrupted by noise,
denoted as n1(q), n2(q), and n3(q).

To accurately estimate the positions of vehicles, data from
each vehicle is recordedmultiple times. In addition, the trans-
portation company has a reference signal
(q), representing
a known signal, which serves as a reference for position esti-
mation. The reconstruction of the positions of vehicles can
be formulated as follows:

sm(q) = 1

4

3∑
p=0

Sm[p](αm[p] + βm[p])

cis
2π

4
pq; q, p = 0, 1, 2, 3, (3.3)

nm(q) = 1

4

3∑
p=0

Nm[p](γm[p] + βm[p])

cis
2π

4
pq; q, p = 0, 1, 2, 3, (3.4)

where Sm[q](αm[q] + βm[q]), Nm[q](γm[q] + βm[q]) ∈
[0, 1]. Also


m(q) = 1

4

3∑
p=0


′[p]cis2π
4

pq; q, p = 0, 1, 2, 3. (3.5)
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Expanding (3.3):

sm(q) = 1

4

⎡
⎢⎢⎢⎢⎣

Sm[0](αm[0] + βm[0])cis( 2π4 q(0))

+Sm[1](αm[1] + βm[1])cis( 2π4 q(1))

+Sm[2](αm[2] + βm[2])cis( 2π4 q(2))

+Sm[3](αm[3] + βm[3])cis( 2π4 q(3))

⎤
⎥⎥⎥⎥⎦

.

In this context, the received signals s1(q), s2(q), and s3(q)

represent the vehicles’ positions, which are essential eco-
nomic indicators for the transportation company. The noise
n1(q),n2(q), andn3(q) represent uncertainties or disruptions
in the GPS signals, while the reference signal 
(q) pro-
vides a stable point of comparison. By employing the given
formulas, the transportation company can reconstruct accu-
rate vehicle positions, crucial for optimizing routes, ensuring
timely deliveries, and ultimately enhancing their economic
efficiency and customer satisfaction.

Substituting q = 0, 1, 2, 3 in Eq. 3.3,

sm(0) = 1

4

⎡
⎢⎢⎢⎢⎣

Sm[0](αm[0] + βm[0]) · 1
+Sm[1](αm[1] + βm[1]) · 1
+Sm[2](αm[2] + βm[2]) · 1
+Sm[3](αm[3] + βm[3]) · 1

⎤
⎥⎥⎥⎥⎦

,

sm(1) = 1

4

⎡
⎢⎢⎢⎢⎣

Sm[0](αm[0] + βm[0]) · 1 + Sm[1](αm[1]
+βm[1])cis ( 2π

4 (1)
)

+Sm[2](αm[2] + βm[2])cis ( 2π
4 (2)

)

+Sm[3](αm[3] + βm[3])cis ( 2π
4 (3)

)

⎤
⎥⎥⎥⎥⎦

,

sm(2) = 1

4

⎡
⎢⎢⎢⎢⎣

Sm[0](αm[0] + βm[0]) · 1 + Sm[1](αm[1]
+βm[1])cis ( 2π

4 (2)
)

+Sm[2](αm[2] + βm[2])cis ( 2π
4 (4)

)

+Sm[3](αm[3] + βm[3])cis ( 2π
4 (6)

)

⎤
⎥⎥⎥⎥⎦

,

and

sm(3) = 1

4

⎡
⎢⎢⎢⎢⎣

Sm[0](αm[0] + βm[0]) · 1 + Sm[1](αm[1]
+βm[1])cis ( 2π

4 (3)
)

+Sm[2](αm[2] + βm[2])cis ( 2π
4 (6)

)

+Sm[3](αm[3] + βm[3])cis ( 2π
4 (9)

)

⎤
⎥⎥⎥⎥⎦

.

Writing (3.3.1), (3.3.2), (3.3.3) and (3.3.4) in matrix form:

⎛
⎜⎜⎜⎜⎝

sm(0)

sm(1)

sm(2)

sm(3)

⎞
⎟⎟⎟⎟⎠

= 1

4

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 cis 2π4 (1) cis 2π4 (2) cis 2π4 (3)

1 cis 2π4 (2) cis 2π4 (4) cis 2π4 (6)

1 cis 2π4 (3) cis 2π4 (6) cis 2π4 (9)

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

Sm[0](αm[0] + βm[0])
Sm[1](αm[1] + βm[1])
Sm[2](αm[2] + βm[2])
Sm[3](αm[3] + βm[3])

⎞
⎟⎟⎟⎟⎠

.

In a similar way, (3.4) and (3.5) can be written. This gives

⎛
⎜⎜⎜⎝

nm(0)

nm(1)

nm(2)

nm(3)

⎞
⎟⎟⎟⎠ = 1

4

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 cis 2π4 (1) cis 2π4 (2) cis 2π4 (3)

1 cis 2π4 (2) cis 2π4 (4) cis 2π4 (6)

1 cis 2π4 (3) cis 2π4 (6) cis 2π4 (9)

⎞
⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

Nm[0](γm[0] + βm[0])
Nm[1](γm[1] + βm[1])
Nm[2](γm[2] + βm[2])
Nm[3](γm[3] + βm[3])

⎞
⎟⎟⎟⎠ ,

and

⎛
⎜⎜⎜⎝


(0)


(1)


(2)


(3)

⎞
⎟⎟⎟⎠ =1

4

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 cis 2π4 (1) cis 2π4 (2) cis 2π4 (3)

1 cis 2π4 (2) cis 2π4 (4) cis 2π4 (6)

1 cis 2π4 (3) cis 2π4 (6) cis 2π4 (9)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝


′[0]

′[1]

′[2]

′[3]

⎞
⎟⎟⎟⎠ .

Now compute reference signal 
(q). For this:


′[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.07; p = 0

0.1; p = 1

0.2; p = 2

0.12; p = 3

.

Using these values of 
[p],obtain
⎛
⎜⎜⎜⎜⎝


(0)


(1)


(2)


(3)

⎞
⎟⎟⎟⎟⎠

= 1

4

⎛
⎜⎜⎜⎜⎝

1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0.07

0.1

0.2

0.12

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0.12

−0.03 − 0.01i

0.01

−0.03 + 0.01i

⎞
⎟⎟⎟⎟⎠

.

The absolute value matrix of the reference signal is then:

⎛
⎜⎜⎜⎜⎝

|
(0)|
|
(1)|
|
(2)|
|
(3)|

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0.12

0.03

0.01

0.03

⎞
⎟⎟⎟⎟⎠

.

From here, it is seen that the maximum value is 0.12.
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Next, for the signal s1(q); q = 0, 1, 2, 3:

S1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3; p = 0

1; p = 1

1; p = 2

10; p = 3

, α1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.14; p = 0

0.12; p = 1

0.02; p = 2

0.04; p = 3

,

β1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.08; p = 0

0.09; p = 1

0.35; p = 2

0.01; p = 3

.

This gives us

⎛
⎜⎜⎝

s1(0)
s1(1)
s1(2)
s1(3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(3) · (0.22)
(1) · (0.21)
(1) · (0.37)
(10) · (0.5)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.44
0.07 − 0.07i

0.08
0.07 + 0.07i

⎞
⎟⎟⎠ .

The absolute value matrix then becomes

⎛
⎜⎜⎝

|s1(0)|
|s1(1)|
|s1(2)|
|s1(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.44
0.1
0.08
0.1

⎞
⎟⎟⎠ .

Along the same lines, for the noise profile n1(q), Let

N1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1; p = 0

1; p = 1

2; p = 2

4; p = 3

, γ1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.39; p = 0

0.52; p = 1

0.12; p = 2

0.07; p = 3

,

β1[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.08; p = 0

0.09; p = 1

0.35; p = 2

0.01; p = 3

.

Putting these values in the matrix form, to get

⎛
⎜⎜⎝

n1(0)
n1(1)
n1(2)
n1(3)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(1) · (0.47)
(1) · (0.61)
(2) · (0.47)
(4) · (0.08)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0.59
−0.12 + 0.07i

0.12
−0.12 − 0.07i

⎞
⎟⎟⎠ .

The absolute value matrix is
⎛
⎜⎜⎝

|n1(0)|
|n1(1)|
|n1(2)|
|n1(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.59
0.14
0.12
0.14

⎞
⎟⎟⎠ .

According to the previous two absolute value matrices
for s1(q) and n1(q), the greatest value is 0.44, with a noise
maximum of 0.59. As a result, the s1(q) is discarded.

For s2(q):

S2[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1; p = 0

2; p = 1

5; p = 2

8; p = 3

, α2[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.56; p = 0

0.03; p = 1

0.09; p = 2

0.06; p = 3

,

β2[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.12; p = 0

0.42; p = 1

0.06; p = 2

0.01; p = 3

.

Proceeding in the same way as before, the following matrix
is obtained

⎛
⎜⎜⎝

|s2(0)|
|s2(1)|
|s2(2)|
|s2(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.72
0.09
0.01
0.09

⎞
⎟⎟⎠ ,

so, the max value is 0.72.
For n2(q), Let

N2[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2; p = 0

0; p = 1

3; p = 2

11; p = 3

, γ2[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.18; p = 0

0.38; p = 1

0.25; p = 2

0.07; p = 3

,

β2[p] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.12; p = 0

0.42; p = 1

0.06; p = 2

0.01; p = 3

.

Solving it the same way as was done for n1(�):

⎛
⎜⎜⎝

|n2(0)|
|n2(1)|
|n2(2)|
|n2(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.6
0.23
0.16
0.23

⎞
⎟⎟⎠ .

Here, max value of s2(q) is 0.72 with max value of n2(q)

0.6. Therefore, the difference between signal and noise is
0.12.
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Now, in respect of signal s3(q), let

S3[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6; p = 0

1; p = 1

6; p = 2

4; p = 3

, α3[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.02; p = 0

0.14; p = 1

0.03; p = 2

0.16; p = 3

,

β3[p] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.08; p = 0

0.14; p = 1

0.01; p = 2

0.07; p = 3

.

It is seen that the absolute value matrix is

⎛
⎜⎜⎝

|s3(0)|
|s3(1)|
|s3(2)|
|s3(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.51
0.18
0.09
0.18

⎞
⎟⎟⎠ .

For the noise profile n3(q), let

N3[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0; p = 0

1; p = 1

8; p = 2

1; p = 3

. γ3[p] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.94; p = 0

0.74; p = 1

0.02; p = 2

0.74; p = 3

,

β3[p] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.08; p = 0

0.14; p = 1

0.01; p = 2

0.07; p = 3

.

Solving similarly, the following matrix is obtained:

⎛
⎜⎜⎝

|n3(0)|
|n3(1)|
|n3(2)|
|n3(3)|

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0.48
0.06
0.36
0.06

⎞
⎟⎟⎠ .

Hence, the max value is 0.51 with a corresponding noise
value of 0.48 and the difference is 0.03. From the above
calculations, it is evident that the signal s2(k) resembles the
most with the reference signal.

In Fig. 3, the signals under consideration are denoted as
s1, s2, and s3. The graphical representation divides the region
into two distinct sections: the upper portion, situated above
the horizontal axis, corresponds to signal strength, while the
lower section, located below the horizontal axis, represents
noise. The ultimate magnitudes of the signals are visually
depicted usingwhite circles featuring a black center. Notably,
the yellow dashed line serves as a benchmark delineating the
criteria necessary for signal acceptance.

Fig. 3 Visual representation of GPS signal disparities

Optimizing cargo loading with
CQDF-congruences

The efficient transfer of goods from ships to trucks plays
a pivotal role in the transportation sector, impacting various
stakeholders, including businesses, consumers, and the econ-
omy as a whole with a particular focus on its contribution to
economic efficiency in the transportation sector. This process
directly supports the expansion of international trade, which
is a critical driver of economic growth. Efficiency in goods
transfer leads to cost savings in the transportation sector.
Optimizing the transition fromships to trucksmaintains com-
petitive prices for goods and services in the market. Efficient
goods transfer also plays a role in reducing the environmental
impact of the transportation sector. It encourages the adop-
tion of cleaner and more sustainable transportation methods,
such as electrified trucks and renewable energy sources for
port operations. Ports and transportation hubs that efficiently
handle cargo attract more shipping traffic and investment.
As a result, these areas become key players in global trade
networks, leading to increased economic activity and inter-
national competitiveness.

In this section, the main objective is to investigate the
application of CQDF-congruences within the context of a
decision-making framework based on AG-groupoids. The
aim is to explore how this decision-making process plays a
key role in cargo loading operations, with a specific emphasis
on enhancing the efficiency of goods transfer from ships to
trucks. Before exploring the problem at hand, it is important
to provide an introductory foundation containing the funda-
mental structure and essential definitions that will serve as
the basis for formulating a methodology. This methodology
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will be specifically designed to address the inherent uncer-
tainties within cargo loading operations, particularly when
employing various loading methods.

In the context of ternary operations, the commutative law
states that abc = cba. By placing brackets on the left side
of this equation, specifically (ab)c = (cb)a, a new algebraic
structure called a left almost semigroup (LA-semigroup),was
introduced by Kazim and Naseeruddin [16]. This identity is
commonly known as the left invertive law. The alternative
name for this structure is Abel-Grassmann’s groupoid (AG-
groupoid), as referred to by Stevanovic and Protic in [31].
An AG-groupoid is a non-associative and non-commutative
algebraic structure that falls between a groupoid and a com-
mutative semigroup [24]. If an AG-groupoid with a left
identity has inverses, it is called anAG-group [15]. It has been
shown in [16] that anAG-groupoid S satisfies themedial law,
which states that (ab)(cd) = (ac)(bd) for all a, b, c, d ∈ S.
The existence of a left identity in an AG-groupoid may vary.
However, if a left identity exists in an AG-groupoid, it is
unique [24]. Moreover, in an AG-groupoid S with a left iden-
tity, the paramedial law (ab)(cd) = (dc)(ba) holds for all
a, b, c, d ∈ S. By applying the medial law with a left iden-
tity, the equation a(bc) = b(ac) for all a, b, c ∈ S can be
obtained.

To explore the latest applications of AG-groupoids in
decision-making, it is suggested to refer to the following
sources: [10, 17, 36–38]. These references offer insightful
examples demonstrating howAG-groupoids have been effec-
tively employed in this domain, highlighting their relevance
and potential impact.

Score and accuracy functions

In this section, the score and accuracy functions will be intro-
duced, playing a crucial role in determining the ranking of
CQDFNs. The score function of a CQDFN can be defined as
follows:

Definition 8 Let ϑ =
((

fCQ e
iθCQ , gCQe

iφCQ

)
, (α, β, γ )

)

be a CQDFN, then the score function on ϑ can be defined by
the mapping �CQ → [−1, 1] as follows:

�CQ (ϑ) = ( fCQ + α + θCQ + β) − (gCQ + φCQ + γ )

3
,

where �CQ (ϑ) is the score of a CQDFN ϑ.

In particular, if �CQ (ϑ) = 1, then ( fCQ + α + θCQ +
β) − (gCQ + φCQ + γ ) = 3.

Rearranging the terms, it is seen that ( fCQ +θCQ )−(gCQ +
φCQ ) + (α + β − γ ) = 3. Since the largest possible value
of α + β + γ = 1, it can easily infer that the largest value
of α + β − γ = 1. This is only possible when α + β = 1
and γ = 0. Along with this, for the above equation to attain

a value of 3, the term ( fCQ + θCQ ) − (gCQ + φCQ ) must
be 2. If the term gCQ + φCQ �= 0, considering the fact that
0 ≤ fCQ, θCQ ≤ 1, it follows that fCQ + θCQ ≤ 2. Even
when the maximum value is considered, i.e., fCQ +θCQ =
2, the expression ( fCQ + θCQ) − (gCQ + φCQ) cannot
be justified since gCQ + φCQ �= 0. It can easily be seen
that a value of 2 for this expression is only possible when
fCQ + θCQ = 2 and gCQ + φCQ = 0. From here, fCQ =
θCQ = 1 and gCQ = φCQ = 0. A similar argument ensures
that �CQ (ϑ) = −1 is possible only when fCQ = θCQ = 0,
gCQ = φCQ = 1, α = β = 0, and γ = 1.

Let

ϑ1 =
((

0.8ei(0.5), 0.9ei(0.3)
)

, (0.3, 0.4, 0.2)
)

,

and

ϑ2 =
((

0.2ei(0.6), 0.7ei(0.2)
)

, (0.1, 0.5, 0.2)
)

,

then�CQ (ϑ1) = 0.2, and�CQ (ϑ2) = 0.1. Since�CQ (ϑ1) >

�CQ (ϑ2), the score function of CQDFN ϑ1 is higher than ϑ2.
However if ϑ3 = (

(
0.6ei(0.3), 0.7ei(0.1)

)
, (0.3, 0.3, 0.1)),

then �CQ (ϑ3) = 0.2. From here, it can be seen that �CQ1=
�CQ3 . In this case, the score function can not distinguish
between CQDFNs �CQ1 and �CQ3 . To address this issue,
consider the following definition of an accuracy function as
follows:

Definition 9 The accuracy function on ϑ can be defined by
the mapping ψCQ → [0, 1] as follows:

ψCQ (ϑ) = fCQ + gCQ + θCQ + φCQ + α + β + γ

5
,

where ψCQ (ϑ) is the accuracy of a CQDFN ϑ.

From above CQDFNs ϑ1 and ϑ3, now calculate that
ψCQ (ϑ1) = 0.68 and ψCQ (ϑ3) = 0.48, that is, the accu-
racy of ϑ1 is greater than that of ϑ3.

The relationship between the score function and the accu-
racy function has been noted to exhibit similarities to the
statistical relationship between themeanandvariance [13]. In
statistics, a proficient estimator is characterized by a smaller
variance in its sampling distribution, indicating superior per-
formance. Likewise, it is justifiable to argue that a higher
degree of accuracy in a CQDFN corresponds to its enhanced
quality.

When comparing two CQDFNs, specifically ϑ1 and ϑ2,
the score and accuracy function could be employed based on
the following criteria:

• if �CQ1 ≤ �CQ2 then ϑ1 ≤ ϑ2.
• if �CQ1 ≥ �CQ2 then ϑ1 ≥ ϑ2.
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• if �CQ1 = �CQ2 then
. if ψCQ1 ≤ ψCQ2 then ϑ1 ≤ ϑ2.
. if ψCQ1 ≥ ψCQ2 then ϑ1 ≥ ϑ2.
. if ψCQ1 = ψCQ2 then ϑ1 = ϑ2.

On CQDF-congruences

This section introduces the concept of congruences in anAG-
groupoid, employing the notions of CQDFS and the score
function. Through the introduction of these congruences, the
goal is to enhance the comprehensive understanding of an
AG-groupoid, particularly in the context of decision-making
problems related to transportation.

For simplicity, in the rest of the article � refers to �CQ .

Let S be an AG-groupoid. A mapping� : S× S → [0, 1]
is called a CQDF-relation on S, where � is a score function.
Let�1,�2 be twoCQDF-relations on S.The product�1◦�2

is defined by

(�1 ◦ �2)(a, b) =
∨
x∈S

{�1(a, x) ∧ �2(x, b)} for all x ∈ S.

A CQDF-relation � on S is called equivalence relation if

(i) �(a, a) = 1 for all a ∈ S (reflexive);
(ii) �(a, b) = �(b, a) for all a, b ∈ S (symmetric);
(iii) � ◦ � ≤ � (transitive), and it is called left (right)

compatible if for all a, b ∈ S,

�(xa, xb) ≥ �(a, b) (�(ax, bx) ≥ �(a, b)).

Compatible if,

�(a, b) ∧ �(c, d) ≤ �(ab, cd) for all a, b, c, d ∈ S.

A CQDF-equivalence relation on S is called congruence
if it is compatible.

Optimizing the transportation of agricultural
products

In the heart of agricultural regions, the challenge of trans-
porting fresh produce from farms to bustling marketplaces is
of supreme importance. The loading methods employed in
this crucial process significantly influence not only delivery
schedules but also the financial viability of the entire agri-
cultural sector. Choosing the appropriate loading method is

a complex decision, dependent on factors such as crop type,
vehicle capacity, and accessibility. To have an overview of
this, three loadingmethods are currently being explored, each
demonstrating distinct advantages and limitations.

• Method A: Precision Loading with Automation
Consider a scenario where a farm harvests delicate fruits
such as strawberries. Precision LoadingwithAutomation
proves invaluable here. Advanced sensors and precision
controls meticulously load these fragile fruits onto vehi-
cles. For instance, automated arms gently pick strawber-
ries one by one, ensuring minimal bruising and damage
during loading. While this method excels in delicate
handling, achieving this precision demands meticulous
alignment between the vehicle and the loading system.
Consequently, the process can be time-consuming, par-
ticularly for large-scale shipments.

• Method B: Conveyor Belt System
In the context of transporting bulk items like potatoes,
the Conveyor Belt System showcases its efficiency. Con-
veyor belts, seamlessly integrated into the infrastructure
of a farm, steadily move the potatoes from storage to
awaiting trucks. This continuous loading method ensures
a swift and continuous flow of produce, optimizing
the loading time significantly. However, the automated
nature of the process might not be suitable for fragile
crops such as tomatoes, as the rapid movement might
cause damage during transit.

• Method C: Forklift-Based Loading
Imagine a farm where a diverse array of produce, includ-
ing crates of vegetables and bulk items like pumpkins,
need to be loaded. Forklift-Based Loading proves indis-
pensable in this scenario. Forklift operators skillfully
maneuver through tight spaces, swiftly loading crates
onto trucks. The flexibility of forklifts enables the effi-
cient handling of various agricultural products, making
them suitable for farms and marketplaces with limited
accessibility. However, this method, reliant on manual
labor, might require more time and effort, potentially
impacting the overall loading duration.

In addressing this decision-making challenge, the goal
is to explore the interactions between these loading meth-
ods in terms of sequences and combinations, employing
an abstract algebraic approach incorporating CQDFS. For
example, the order of loading methods, such as starting
with precision loading with automation followed by forklift-
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based loading, may yield different outcomes compared to the
reverse sequence or incorporating the conveyor belt system.
This analysis results in a total of nine distinct combina-
tions. Utilizing a thorough evaluation approach, the aim is to
enable informed decision-making, ensuring that the chosen
methods precisely align with the distinct requirements and
constraints associated with each cargo shipment. This strate-
gic alignment ultimately contributes to enhanced operational
outcomes within the agricultural transportation sector.

An evaluation matrix is created, denoted as a, b, and c,
representing Methods A, B, and C, respectively. The aim is
to establish a specialized loading structure that ensures chain-
ing interactions between these methods in the framework of
CQDF-congruences induced by AG-groupoids. This chain-
ing is crucial as the efficiency of loading operations varies
depending on the sequence in which methods are employed.

Let us consider a set S = {a, b, c} under a binary operation
“·” given as follows:

· a b c
a b b b
b b b b
c a b b

Define a function ϑ that takes two methods as inputs
and produces a complex number along with a probability
distribution. The complex number represents the observed
performance of different loading method pairs. They assign
specific values to ϑ for each pair of methods based on their
observations and measurements. Let us define ϑ : S × S →
[0, 1] as follows.

ϑ(x, y)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((1ei(1), 0ei(0)), (0.6, 0.4, 0)) : (x, y) = (a, a)

((1ei(1), 0.2ei(0.5)), (0.6, 0.3, 0.1)) : (x, y) = (a, b)

((0.8ei(0.7), 0.6ei(0.1)), ((0.5, 0.2, 0.3)) : (x, y) = (a, c)

((0.9ei(0.7), 0.1ei(0.2)), (0.3, 0.6, 0.1)) : (x, y) = (b, a)

((1ei(1), 0ei(0)), (0.5, 0.5, 0)) : (x, y) = (b, b)

((0.4ei(0.6), 0.7ei(0.6)), (0.1, 0.2, 0.6)) : (x, y) = (b, c)

((0.9ei(0.6), 0.4ei(0.3)), (0.2, 0.5, 0.3)) : (x, y) = (c, a)

((0.5ei(0.5), 0.8ei(0.4)), (0.2, 0.1, 0.7)) : (x, y) = (c, b)

((1ei(1), 0ei(0)), (0.2, 0.8, 0)) : (x, y) = (c, c).

It can be easily verified that ϑ is CQDFS. Now, the engineers
can calculate the score for each alternative based on the given
parameters. The score ranges from−1 to 1, with 1 indicating
the highest score. The score function of ϑ , given by � is
given as follows:

�(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (x, y) = (a, a)

0.7 if (x, y) = (a, b)

0.4 if (x, y) = (a, c)

0.7 if (x, y) = (b, a)

1 if (x, y) = (b, b)

−0.2 if (x, y) = (b, c)

0.4 if (x, y) = (c, a)

−0.2 if (x, y) = (c, b)

1 if (x, y) = (c, c).

It can be verified that � is a congruence relation on S.
Based on the scores (accuracies), the engineers rank the

alternatives in order of preference. The alternative with the
highest score (accuracy) is considered the most favorable,
followed by the alternatives with lower scores (accuracies).
The following table will give us the score (accuracy) for each
alternative based on the given parameters:

(x, y) (a, a) (a, b) (a, c) (b, a) (b, b) (b, c) (c, a) (c, b) (c, c)
Score 1 0.7 0.4 0.7 1 −0.2 0.4 −0.2 1

Accuracy 0.6 0.74 0.64 0.58 0.6 0.64 0.64 0.64 0.6

The positions of the alternatives based on the above score
(accuracy) can be seen as follows:

Preferences trivial 1st 2nd 3rd 4th
(x, y) (a, a), (b, b), (c, c) (a, b) (b, a) (a, c), (c, a) (b, c), (c, b)
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Fig. 4 Visualization for loading methods rankings

The loading approach,wherein the samemethod is applied
repeatedly, is considered trivial due to its inherent property
within CQDF-congruences, which does not offer substan-
tial information for ranking purposes. Consequently, the
focus lies in exploring combinations of methods where each
method employed is distinct, avoiding repetitions, to gain
meaningful insights. It is found that the alternatives are
ranked as follows (also see Fig. 4) for loading operations:

1st: with method a first and then with method b.
2nd: with method b first and then with method a.
3rd: with method a first and then with method c and vice

versa.
4th: with method b first and then with method c and vice

versa.

The scoring system � takes these interactions into
account, providing insights into the effectiveness of differ-
ent loading method pairs based on real-world observations.
This evaluation ensures that the harbor’s cargo loading oper-
ations are optimized, contributing to economic efficiency
and the smooth flow of goods in and out of the harbor.
Based on these rankings, one can make an informed deci-
sion about which method(s) to choose for loading operations
based on performance measurements provided by the func-
tion ϑ . Figure 5 displays a heat map illustrating the rankings
of different methods. The color spectrum used in this rep-
resentation spans from blue, representing a zero ranking, to
yellow, signifying a fourth ranking. This graphical represen-

Fig. 5 Heat map of loading methods rankings

tation provides a visually intuitive way to understand the
hierarchical placement of the methods being examined, with
each color indicating a distinct level of ranking achievement.

The aforementioned decision-making problem provides a
clear and well-structured set of preferences for loading cargo
using various methods. These preferences play a crucial role
in guiding the choices and ensuring efficiency in cargo load-
ing operations. At the highest level of priority is “Method A”
followed by “Method B”. The 1st priority preference (a, b)
signifies that these methods are the top choices for loading
cargo. This preference emphasizes their superior efficiency,
reliability, or other advantages, making them the primary
options to consider. The preference hierarchy outlined in
this decision-making problem provides valuable guidance
for cargo loading operations. It allows decision-makers to
make informed choices based on the specific circumstances
and constraints of each situation, ensuring the most efficient
and effective approach to cargo handling.

Comparative analysis

In this section, a comprehensive comparative analysis is
undertaken to assess the advantages and characteristics of
the CQDFS model, as introduced within this research, in
contrast to established techniques. The resulting comparative
assessment is outlined in Fig. 6, where a thorough investi-
gation is carried out to clarify the features of the CQDFS
model with various extensions of complex fuzzy sets. The
complex quadratic Diophantine fuzzy set’s superiority lies
in its ability to handle a wide range of uncertain information
by considering the simultaneous consideration of hesitancy
and parameters. This makes it a valuable tool across multiple
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Fig. 6 Comparison of CQDFS with existing extensions of fuzzy sets

domains where the management of imprecise and uncertain
data constitutes a common challenge.

Figure 6 presents a detailed illustration that highlights the
distinctive attributes of various fuzzy sets. The chosen color
scheme serves to differentiate the presence and absence of
characteristics, with green indicating the presence and red
signifying the absence of these attributes. The observed pat-
terns underscore the diverse capabilities inherent in different
extensions of fuzzy sets, particularly in their ability to man-
age various types of information.

Specifically, it is evident that CFS exclusively handles
information categorized as acceptance type. In contrast,
CIFS, CPyFS, and Cq-ROFS demonstrate a more encom-
passing nature, allowing them to consider both acceptance
and rejection types of information. CPFS further extends its
applicability by accommodating information characterized
by an ignorance type. Despite these advancements, it is note-
worthy that all these extensions introduce certain constraints
on membership and non-membership functions. An excep-
tion to this general trend is CLDFS,which distinguishes itself
by eliminating these restrictions through the imposition of
parameterization. However, it is essential to acknowledge
that while CLDFS exhibits this enhanced flexibility, it faces
limitations in effectively handling information character-
ized by ignorance types. This nuanced analysis underscores
the intricate trade-offs and capabilities associated with each
fuzzy set extension, providing insights into their respective
strengths and limitations in processing diverse forms of infor-
mation.

The CQDFS method proposed in this study provides a
higher degree of flexibility and autonomy in handling fuzzy
information.

Complex Rankings
set types 1st 2nd 3rd 4th 5th 6th

CFS (a, b) (b, a) (a, c) (b, c) ... ...

(c, a) (c, b)

CLDFS (a, b) (a, c) (b, a) (c, a) (c, b) (b, c)
CQDFS (a, b) (b, a) (a, c) (b, c) ... ...

(Proposed) (c, a) (c, b)

The provided table offers a comprehensive overview of
the ranking comparisons involving the proposed CQDFS.
A notable observation is that CFS shares the same ranking
as CQDFS, indicating a degree of similarity in their perfor-
mance. Interestingly, CLDFS exhibits identical rankings at
both the first and last positions when compared to CQDFS,
suggesting some congruence in their outcomes.

However, the ranking comparisons for CIFS, CPyFS,
and Cq-ROFS are not feasible due to their limited fea-
sible space. Specifically, the given preference (a, b) =
(1ei(1), 0.2ei(0.5)), (0.6, 0.3, 0.1) falls outside the domains
of thesemethods. Consequently, a direct comparison of rank-
ings cannot be conducted for these fuzzy set extensions,
highlighting a constraint in their applicability to the spec-
ified preference values.

Conclusion

This study introduces the concept of CQDFS with a specific
focus on addressing challenges related to uncertainty and
ambiguity in decision-making. CQDFS incorporates mem-
bership, non-membership, andhesitatingvalues innovatively,
establishing a flexible framework for decision-makers to
effectively navigate complex and uncertain scenarios. The
versatility of CQDFS becomes apparent through its com-
prehensive consideration of various aspects of uncertainty,
providing decision-makers with a robust tool for manag-
ing complexity. Through a detailed comparative analysis,
the study demonstrates the superior flexibility and auton-
omy of CQDFS compared to existing fuzzy set extensions.
This comparative assessment underscores the unique capa-
bilities of CQDFS, positioning it as an advanced and reliable
solution for decision-makers dealing with intricate deci-
sion environments. It is crucial to note certain limitations
within the algorithm. The potential for extension to consider
big data enhances its applicability to large-scale data sets.
Moreover, the algorithm’s adaptability to attributes through
the incorporation of weights contributes to enhanced preci-
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sion in decision-making scenarios. The practical implications
of these findings extend beyond theoretical advancements,
especially in the context of enhancing economic sustainabil-
ity within the transportation industry. Looking ahead, there is
promising potential for further exploration of CQDFS appli-
cations and a comprehensive evaluation of its effectiveness
across diverse domains. Future research endeavors could
delve into its utility in analyzing extensive data sets in finance
and economics, aswell as in assessing the capabilities of large
language models in artificial intelligence. Furthermore, the
integration of modern algebra within the CQDFS framework
presents exciting possibilities for expanding research scope
and facilitating practical implementations in these evolving
fields.
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